首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanism, origin, and evolution of anoxia tolerance in animals
Authors:P W Hochachka  P L Lutz
Abstract:Organisms vary widely in their tolerance to conditions of limiting oxygen supply to their cells and tissues. A unifying framework of hypoxia tolerance is now available that is based on information from cell-level models from highly anoxia-tolerant species, such as the aquatic turtle, and from other more hypoxia-sensitive systems. The response of hypoxia-tolerant systems to oxygen lack occurs in two (defense and rescue) phases. The first lines of defense against hypoxia include a drastic, if balanced, suppression of ATP demand and supply pathways; this regulation allows ATP levels to remain constant, even while ATP turnover rates greatly decline. The ATP requirements of ion pumping are down-regulated by generalized ‘channel’ arrest in hepatocytes and by the arrest of specific ion channels in neurons. In hepatocytes, the ATP demands of protein synthesis are down-regulated on exposure to hypoxia by an immediate global blockade of the process (probably through translational arrest caused by complexing between polysomes and elongation factors). In hypoxia-sensitive cells, this translational arrest seems irreversible, but hypoxia-tolerant systems activate ‘rescue’ mechanisms if the period of oxygen lack is extended by preferentially regulating the expression of several proteins. In these cells, a cascade of processes underpinning hypoxia rescue and defense begins with an oxygen sensor (a heme protein) and a signal transduction pathway that leads to the specific activation of some genes (increased expression of several proteins) and to specific down-regulation of other genes (decreased expression of several other proteins). The functional roles of the oxygen-sensing and signal-transduction system include significant gene-based metabolic reprogramming — the rescue process — with maintained down-regulation of energy demand and supply pathways in metabolism throughout the hypoxic period. We consider that, through this recent work, it is becoming evident how normoxic-maintenance ATP turnover rates can be down-regulated by an order of magnitude or more — to a new hypometabolic steady state, which is prerequisite for surviving prolonged hypoxia or anoxia. Because the phylogenies of the turtles and of fishes are well known, we are now in an excellent position to assess conservative vs. adaptable features in the evolution of the above hypoxia-response physiology in these two specific animal lineages.
Keywords:Hypometabolism  Hypoxic brain  Hypoxic hepatocyte  Channel arrest  Spike arrest  Protein synthesis  Hypoxia sensing  Mitochondrial biogenesis  Hypoxia inducible factor 1 (HIF-1)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号