首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Aromatic Amino Acid Auxotrophs Constructed by Recombinant Marker Exchange in Methylophilus methylotrophus AS1 Cells Expressing the aroP-Encoded Transporter of Escherichia coli
Authors:Yurgis A V Yomantas  Irina L Tokmakova  Natalya V Gorshkova  Elena G Abalakina  Svetlana M Kazakova  Evgueni R Gak  Sergey V Mashko
Institution:Ajinomoto-Genetika Research Institute, Moscow 117545, Russian Federation
Abstract:The isolation of auxotrophic mutants, which is a prerequisite for a substantial genetic analysis and metabolic engineering of obligate methylotrophs, remains a rather complicated task. We describe a novel method of constructing mutants of the bacterium Methylophilus methylotrophus AS1 that are auxotrophic for aromatic amino acids. The procedure begins with the Mu-driven integration of the Escherichia coli gene aroP, which encodes the common aromatic amino acid transporter, into the genome of M. methylotrophus. The resulting recombinant strain, with improved permeability to certain amino acids and their analogues, was used for mutagenesis. Mutagenesis was carried out by recombinant substitution of the target genes in the chromosome by linear DNA using the FLP-excisable marker flanked with cloned homologous arms longer than 1,000 bp. M. methylotrophus AS1 genes trpE, tyrA, pheA, and aroG were cloned in E. coli, sequenced, disrupted in vitro using a Kmr marker, and electroporated into an aroP carrier recipient strain. This approach led to the construction of a set of marker-less M. methylotrophus AS1 mutants auxotrophic for aromatic amino acids. Thus, introduction of foreign amino acid transporter genes appeared promising for the following isolation of desired auxotrophs on the basis of different methylotrophic bacteria.The nonpathogenic Gram-negative bacterium Methylophilus methylotrophus is able to grow efficiently using C1 substrates (methanol, methylamine, or trimethylamine) as the sole source of carbon and energy, and it uses the ribulose monophosphate pathway for fixation of formaldehyde produced by the oxidation of methanol (36). Methanol has received considerable attention by the fermentation industry as an alternative substrate to the more generally used sugars from agricultural crops. It can be synthesized either from petrochemicals or renewable resources, such as biogas (48), and therefore the production of methanol does not compete directly with human food supplies. Methylotrophs can therefore be considered potentially useful strains for industrial biotechnology. M. methylotrophus AS1 is an obligate methylotroph originally isolated from activated sludge, and it has been deposited in the National Collections of Industrial, Marine and Food Bacteria (NCIMB; no. 10515). This organism was extensively studied in the 1970s and has been industrialized on a large scale for the manufacturing of single-cell proteins (SCP) from methanol (56, 63). During that period, a significant amount of research was conducted on the direct production of amino acids by fermentation from methanol (3, 58). Although initially promising, these efforts ultimately proved relatively unsatisfactory and impractical, due primarily to the rather poor set of genetic tools that had been developed for methylotrophs.Over the last 5 years, several genomes of methylotrophs have been sequenced (8, 20, 29, 37, 65, 67), and significant progress in elucidating their metabolism has been achieved (14). The number of tools available for the genetic and metabolic engineering of methylotrophic bacteria has been expanded greatly (1, 15, 21, 43), and strategies to produce fine and bulk chemicals by methylotrophs have been described (5, 42, 57, 61). All of these factors led to renewed interest in the construction of methylotrophic strain producers, and the larger knowledge base has enabled more targeted engineering of these bacteria (55).Although M. methylotrophus AS1 has been extensively studied with regard to the industrial scale production of SCP (56, 63) and the oxidation of methanol at the initial stages of carbon and energy metabolism (13, 28), there has been little metabolic analysis of amino acid biosynthesis in this organism. Moreover, selection of auxotrophic mutants of obligate methylotrophs for broadening convenient genetic tools remains a particularly complicated task (19). Although the isolation of several auxotrophs for M. methylotrophus AS1 has been described (6, 23, 40), their numbers are limited. Development of different methods for the isolation of the mutants did not lead to construction of a collection of auxotrophic mutants that could assist in the investigation of amino acid biosynthetic pathways in M. methylotrophus AS1.As for the l-lysine (Lys) synthesis, systematic research was carried out by specialists at Ajinomoto Co., Inc., Japan, beginning with the investigation of the Lys biosynthetic pathway in M. methylotrophus AS1 (23, 61) and continuing with the construction and improvement of a Lys producer (22, 24, 33, 34). This was followed by optimization of fed-batch fermentation for overproduction of Lys from methanol (35).The aim of our investigation was to generate strains based on M. methylotrophus AS1 with the potential for industrial production of aromatic amino acids (AroAAs). It is known that mutants with relaxed feedback inhibition of key biosynthetic enzymes should be isolated at the initial steps of the construction of the amino acid producers and that the relevant degradation pathways should be blocked due to selection of the corresponding auxotrophic strains (7, 31, 49).In this study, a novel method for the construction of AroAA auxotrophic mutants of M. methylotrophus AS1 is described. This method is based on the introduction of a foreign gene encoding a specific amino acid transporter into the genome of M. methylotrophus AS1. The resulting recombinant methylotrophic strain, which possesses increased permeability to the AroAAs and their analogues, was mutated by recombination-mediated substitution of the target chromosomal genes of aromatic pathways by a flippase recombinase (FLP)-excisable marker from artificial linear DNA. This approach led to the construction of a set of M. methylotrophus AS1 marker-less mutants with destroyed genes of AroAA biosynthesis. Thus, introduction of foreign amino acid transporter genes appeared promising for the following isolation of desired auxotrophs on the basis of different methylotrophic bacteria.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号