首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Stomatal response to humidity in a sugarcane field: simultaneous porometric and micrometeorological measurements*
Authors:D A GRANTZ  F C MEINZER
Abstract:Abstract. Gas exchange data obtained with wellventilated leaf cuvettes provide clear evidence of a stomatal response to leaf-air vapour pressure difference (V). In contrast, remotely sensed leaf temperatures with specific assumptions regarding canopy boundary layer characteristics, have been interpreted to mean that stomata do not respond to V. We address this apparent discrepancy in a sugarcane field by simultaneous application of a single-leaf, porometric technique and a whole-canopy, Bowen ratioenergy balance technique. These methods indicated significant stomatal response to V in well-irrigated sugarcane. Stomatal responses to V in the field were obscured by strong covariance of major environmental parameters so that opening responses to light and closing responses to V tended to offset each other. Low boundary layer conductance significantly uncoupled V at the leaf surface (Vs) from V determined in the bulk atmosphere (Va). This reduced the range of the stimulus, Vs, thereby reducing the range of the stomatal response, without indicating low stomatal sensitivity to V. Stomatal responses to Va may be smaller than expected from V response curves in cuvettes, since Vs rather than the conventionally measured Va is analogous to V in a well-stirred cuvette. Recently published conclusions that remotely sensed canopy temperatures are inconsistent with stomatal response to V may be based on erroneous estimates of canopy boundary layer conductance and thus of Vs, use of air saturation deficit rather than V to express evaporative demand, and investigation at higher levels of evaporative demand than those eliciting maximal stomatal response.
Keywords:Saccharum spp  : sugarcane  humidity  stomata  vapour pressure difference: Bowen ratio  transpiration  conductance  canopy temperature  water use
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号