首页 | 本学科首页   官方微博 | 高级检索  
     


The Treatment of Missing Values in Logistic Regression
Authors:Karen Yuen Fung  Barbara A. Wrobel
Abstract:The efficiencies of the estimators in the linear logistic regression model are examined using simulations under six missing value treatments. These treatments use either the maximum likelihood or the discriminant function approach in the estimation of the regression coefficients. Missing values are assumed to occur at random. The cases of multivariate normal and dichotomous independent variables are both considered. We found that in general, there is no uniformly best method. However, mean substitution and discriminant function estimation using existing pairs of values for correlations turn out to be favourable for the cases considered.
Keywords:Missing values  Logistic model
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号