首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A flow cytometry analysis of batch and continuous culture transient diauxic growth in Hansenula polymorpha
Authors:J D Bryers  T Yeh
Institution:(1) The Center for Biochemical Engineering, Duke University, 27706 Durham, NC, USA
Abstract:A flow cytometry analysis and in vitro enzyme activity study is carried out on the methylotrophic yeast, Hansenula polymorpha, during both (a) batch growth and (b) continuous cultures subjected to single perturbations in either system dilution rate or influent carbon substrate composition. Flow cytometry of yeasts growing diauxically on a glucose: methanol mixture during exponential growth, exhibit DNA and RNA distributions indicative of the S-synthesis-phase of the cell cycle. Cells at the stationary growth stage exhibit DNA and RNA distributions that indicate one portion of the population in the G 0/G1 resting phase and another in the M-mitosis-phase.Yeast cells grown at a steady-state of D=0.2 h1, then shifted to D=0.35 h–1, at a constant influent substrate mixture, are also examined with both flow cytometry and in vitro enzyme assays. Distributions of DNA, RNA, and total protein at either steady state and during the shift between dilution rates did not resemble any observed in batch culture. Flow cytometry indicates significant changes in cell composition within 20 min of the imposed dilution rate shift. In vitro enzyme assays show a response time in decreasing methanol oxidase activity of 2.5–3 h upon a dilution rate shift-up, while hexokinase activity increases to its steady-state level in less than 3 h. Similar cell compositional changes are reported for shifts in influent substrate methanol: glucose ratio at a constant dilution rate of D=0.35 h –1. Results suggest that an unsteady-state regime, oscillating between conditions that promote maximum enzyme activity of either glucose- or methanol-metabolizing enzymes, may allow simultaneous enhanced time-averaged production of both sets of enzymes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号