首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Growth rates of baldcypress (Taxodium distichum) seedlings in a treated effluent assimilation marsh
Authors:Chris J Lundberg  Gary P ShafferWilliam B Wood  John W Day Jr
Institution:a Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA 70402, United States
b Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, United States
Abstract:Wetlands have proven effective at improving water quality of treated wastewater effluent, which in turn promotes increased primary productivity and vertical accretion. Baldcypress (Taxodium distichum) seedlings grown under different conditions (bare root and potted) were planted in four subunits of an effluent assimilation marsh and a control marsh in southeast Louisiana, USA, and basal diameter growth was monitored over one growing season. Mean basal diameter growth for seedlings in the assimilation subunits ranged from 16.1 (±1.4) mm to 9.5 (±0.9) mm, whereas growth for seedlings planted in the control marsh was 6.4 (±0.9) mm. Seedlings planted nearest the outfall experienced greater basal diameter growth (18.1 ± 2.6) compared to those planted 700 m away (8.0 ± 0.9), with growth generally decreasing with distance. Potted seedlings experienced greater growth (19.1 ± 1.0 and 20.6 ± 1.0 for five-month-olds and ten-month olds, respectively) than bare root seedlings (4.6 ± 0.6 and 4.0 ± 0.4 for one-year-olds and two-year olds, respectively). Planting assimilation marshes with baldcypress seedlings can be an effective restoration tool for coastal Louisiana, which will provide hurricane protection and improved surface water quality. Wastewater treatment wetlands may offer an effective tool for restoring coastal baldcypress (T. distichum)-water tupelo (Nyssa aquatic) swamps in Louisiana.
Keywords:Wastewater treatment wetlands  Taxodium distichum  Wetland restoration  Water quality
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号