首页 | 本学科首页   官方微博 | 高级检索  
     


Soil core and minirhizotron comparison for the determination of root length density
Authors:Benjamin K. Samson  Thomas R. Sinclair
Affiliation:(1) USDA-ARS, Agronomy Physiology Laboratory, University of Florida, 32611-0840 Gainesville, FL, USA
Abstract:Detailed knowledge of the distribution of roots in the soil is important in understanding the extraction of water and nutrients from soil. Various techniques have been developed to monitor root-length density under field conditions. Excavation techniques, including soil cores, have long been considered to give reliable estimates of root-length density, but these techniques are laborious in sample collection and tedious in determination of root lengths. An attractive alternative for monitoring root-length density has been the minirhizotron whereby a periscope is inserted into a clear tube permanently installed in the soil for repeated and rapid measures of root development. The objective of this study was to compare the ability of the minirhizotron technique to measure root-length density as compared to the root-core technique.As in previous studies, substantial disagreement existed between the two techniques in the top 30-cm of the soil. The results from the minirhizotron consistently indicated a much lower root population than the root-core technique in the surface layer of soil. This is especially worrisome because more than 45% of the root-length density was found in this layer with the root-core technique. At deeper soil layers, the minirhizotron data proved to be no less variable than the root-core technique making the determination of statistically significant results difficult. Finally, the relationship between the minirhizotron and soil-core results varied with time even when the observations from the soil surface layer were ignored. Attempts to directly translate minirhizotron observations into a root-length density using a correlation approach would be suspect based on the results of this experiment.Mention of company names or commercial products does not imply recommendation or endorsement by the United States Department of Agriculture over others not mentioned.
Keywords:minirhizotron  root-length density  soil core  Zea mays
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号