首页 | 本学科首页   官方微博 | 高级检索  
     


Epidermal growth factor or okadaic acid stimulates phosphorylation of eukaryotic initiation factor 4F
Authors:R W Donaldson  C H Hagedorn  S Cohen
Affiliation:Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee.
Abstract:Eukaryotic initiation factor 4F, a multi-protein mRNA cap binding complex, was isolated by m7GTP-Sepharose affinity chromatography from human mammary epithelial cells (184A1N4) incubated with [32P] orthophosphate. Treatment of cells with epidermal growth factor resulted in enhanced phosphorylation of both p28 (eIF-4E) and p220 subunits. The identities of the p28 and p220 subunits were confirmed by immunoprecipitation. The phosphorylation was both rapid and sustained in duration; p28 attained maximal levels (2-3-fold) within 30 min of treatment and remained elevated for at least 2 h, while p220 reached one-half maximal levels by 30 min, and maximal levels (3-4-fold) by 2 h of treatment. Two phosphorylated isoforms of p28 and multiple phosphorylated forms of p220 were detected by two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phosphoamino acid analysis of 6 N HCl hydrolyzates of p28 and p220 isolated from epidermal growth factor-treated and control cells indicated that serine is the predominant phosphorylated amino acid in both instances. In no case was phosphotyrosine observed. Pretreatment of cells with 1 microM okadaic acid resulted in the hyperphosphorylation of both p28 and p220 subunits. These results suggest that mitogenic growth factors and cellular serine/threonine phosphatases (pp1 and/or pp2A) serve essential roles in regulating phosphorylation levels of eukaryotic initiation factor 4F and support the concept that translational control is a component of the signal transduction mechanisms involved in growth regulation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号