首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The C termini of constitutive nitric-oxide synthases control electron flow through the flavin and heme domains and affect modulation by calmodulin
Authors:Roman L J  Martásek P  Miller R T  Harris D E  de La Garza M A  Shea T M  Kim J J  Masters B S
Institution:Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78229, USA. roman@uthscsa.edu
Abstract:The sequences of nitric-oxide synthase flavin domains closely resemble that of NADPH-cytochrome P450 reductase (CPR). However, all nitric-oxide synthase (NOS) isoforms are 20-40 residues longer in the C terminus, forming a "tail" that is absent in CPR. To investigate its function, we removed the 33 and 42 residue C termini from neuronal NOS (nNOS) and endothelial NOS (eNOS), respectively. Both truncated enzymes exhibited cytochrome c reductase activities without calmodulin that were 7-21-fold higher than the nontruncated forms. With calmodulin, the truncated and wild-type enzymes reduced cytochrome c at approximately equal rates. Therefore, calmodulin functioned as a nonessential activator of the wild-type enzymes and a partial noncompetitive inhibitor of the truncated mutants. Truncated nNOS and eNOS plus calmodulin catalyzed NO formation at rates that were 45 and 33%, respectively, those of their intact forms. Without calmodulin, truncated nNOS and eNOS synthesized NO at rates 14 and 20%, respectively, those with calmodulin. By using stopped-flow spectrophotometry, we demonstrated that electron transfer into and between the two flavins is faster in the absence of the C terminus. Although both CPR and intact NOS can exist in a stable, one-electron-reduced semiquinone form, neither of the truncated enzymes do so. We propose negative modulation of FAD-FMN interaction by the C termini of both constitutive NOSs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号