Metastable, partially folded states in the productive folding and in the misfolding and amyloid aggregation of proteins |
| |
Authors: | Sérgio T. Ferreira Fernanda G. De Felice Alexander Chapeaurouge |
| |
Affiliation: | (1) Instituto de Bioquímica Médica, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil;(2) Departamento de Fisiologia e Farmacodinamica, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil |
| |
Abstract: | Understanding the energetic and structural basis of protein folding in a physiological context may represent an important step toward the elucidation of protein misfolding and aggregation events that take place in several pathological states. In particular, investigation of the structure and thermodynamic properties of partially folded intermediate states involved in productive folding or in misfolding/aggregation may provide insight into these processes and suggest novel approaches to prevent misfolding in living organisms. This goal, however, has remained elusive, because such intermediates are often transient and correspond to metastable states that are little populated under physiological conditions. Characterization of these states requires their stabilization by means of manipulation of the experimental conditions, involving changes in temperature, pH, or addition of different types of denaturants. In the past few years, hydrostatic pressure has been increasingly used as a thermodynamic variable in the study of both protein folding and misfolding/aggregation transitions. Compared with other chemical or physical denaturing agents, a unique feature of pressure is its ability to induce subtle changes in protein conformation, allowing the stabilization of partially folded states that are usually not significantly populated under more drastic conditions. Much of the recent work in this field has focused on the characterization of folding intermediates, because they seem to be involved in a variety of disease-causing protein misfolding and aggregation reactions. Here, we review recent examples of the use of hydrostatic pressure as a tool to gain insight into the forces and energetics governing the productive folding or the misfolding and amyloid aggregation of proteions. |
| |
Keywords: | Protein folding misfolding amyloid aggregates hydrostatic pressure |
本文献已被 PubMed SpringerLink 等数据库收录! |
|