首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of elevated physiological temperatures on sarcoplasmic reticulum function in mechanically skinned muscle fibers of the rat
Authors:van der Poel C  Stephenson D G
Affiliation:Dept. of Zoology, La Trobe University, Victoria 3086, Australia.
Abstract:
Properties of the sarcoplasmic reticulum (SR) with respect to Ca2+ loading and release were measured in mechanically skinned fiber preparations from isolated extensor digitorum longus (EDL) muscles of the rat that were either kept at room temperature (23°C) or exposed to temperatures in the upper physiological range for mammalian skeletal muscle (30 min at 40 or 43°C). The ability of the SR to accumulate Ca2+ was significantly reduced by a factor of 1.9–2.1 after the temperature treatments due to a marked increase in SR Ca2+ leak, which persisted for at least 3 h after treatment. Results with blockers of Ca2+ release channels (ruthenium red) and SR Ca2+ pumps [2,5-di(tert-butyl)-1,4-hydroquinone] indicate that the increased Ca2+ leak was not through the SR Ca2+ release channel or the SR Ca2+ pump, although it is possible that the leak pathway was via oligomerized Ca2+ pump molecules. No significant change in the maximum SR Ca2+-ATPase activity was observed after the temperature treatment, although there was a tendency for a decrease in the SR Ca2+-ATPase. The observed changes in SR properties were fully prevented by the superoxide (O2bullet–) scavenger Tiron (20 mM), indicating that the production of O2bullet– at elevated temperatures is responsible for the increase in SR Ca2+ leak. Results show that physiologically relevant elevated temperatures 1) induce lasting changes in SR properties with respect to Ca2+ handling that contribute to a marked increase in the SR Ca2+ leak and, consequently, to the reduction in the average coupling ratio between Ca2+ transport and SR Ca2+-ATPase and muscle performance, and 2) that these changes are mediated by temperature-induced O2bullet– production. skeletal muscle; calcium ion leak; superoxide; skinned fibers
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology. Cell physiology》浏览原始摘要信息
点击此处可从《American journal of physiology. Cell physiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号