The CD38-cyclic ADP-ribose signaling system in insulin secretion |
| |
Authors: | Okamoto Hiroshi |
| |
Affiliation: | (1) Department of Biochemistry, Tohuku University School of Medicine, Sendai, Japan |
| |
Abstract: | ![]() Glucose induces an increase in the intracellular Ca2+ concentration in pancreatic -cells to secrete insulin. CD38 occurs in -cells and has both ADP-ribosyl cyclase, which catalyzes the formation of cyclic ADP-ribose (cADPR) from NAD+, and cADPR hydrolase, which converts cADPR to ADP-ribose. ATP, produced by glucose metabolism, competes with cADPR for the binding site, Lys-129, of CD38, resulting in the inhibition of the hydrolysis of cADPR and thereby causing cADPR accumulation in -cells. Cyclic ADP-ribose then binds to FK506-binding protein 12.6 in the ryanodine receptor Ca2+ channel (RyR), dissociating the binding protein from RyR to induce the release of Ca2+ from the endoplasmic reticulum. Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) phosphorylates RyR to sensitize and activate the Ca2+ channel. Ca2+, released from the RyR, further activates CaM kinase II and amplifies the process. Thus, cADPR acts as a second messenger for Ca2+ mobilization to secrete insulin. The novel mechanism of insulin secretion described above is different from the conventional hypothesis in which Ca2+ influx from extracellular sources plays a role in insulin secretion by glucose. |
| |
Keywords: | cyclic ADP-ribose CD38 FK506-binding protein ryanodine receptor Ca2+/calmodulin-dependent protein kinase II insulin diabetes |
本文献已被 SpringerLink 等数据库收录! |
|