Flip-flop of hydroxy fatty acids across the membrane as monitored by proton-sensitive microelectrodes |
| |
Authors: | Elena E. Pohl Anna M. Voltchenko Anne Rupprecht |
| |
Affiliation: | Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany |
| |
Abstract: | Hydroxyl group-containing fatty acids play an important role in anti-inflammatory action, neuroprotection, bactericide and anti-cancer defense. However, the mechanism of long-chain hydroxy fatty acids (HFA) transport across plasma membranes is still disputed. Two main hypotheses have been suggested: firstly, that protonated HFAs traverse across the membranes spontaneously and, secondly, that the transport is facilitated by proteinaceous carriers. Here, we demonstrate that the protonated HFA are able to move across planar lipid bilayers without protein assistance. This transport step is accompanied by the acidification of the buffer in receiving compartment and the pH augmentation in the donating compartment. The latter contained liposomes doped with HFA. As revealed by scanning pH-sensitive microelectrodes, the pH shift occurred only in the immediate vicinity of the membrane, while bulk pH remained unchanged. In concurrence with the theoretical model of weak acid transport, the pH value at maximum proton flux was almost equal to the pK of the studied HFA. Intrinsic pKi values were calculated from the electrophoretic mobilities of HFA-containing liposomes and were 5.4, 6.5, 6.9 and 6.3 for 2-hydroxyhexadecanoic, 16-hydroxyhexadecanoic, 12-hydroxydodecanoic and 9,10,16-trihydroxyhexadecanoic acids, respectively. |
| |
Keywords: | BLM, bilayer lipid membrane FA, long-chain fatty acids HFA, long-chain hydroxy fatty acids FH, protonated form of fatty acid FA&minus , deprotonated form of fatty acid USL, unstirred layer PTFE, polytetrafluoroethylene DPhPC, Diphytanoyl-phosphatidylcholine TES, N-[Tris(hydroxymethyl)methyl]-2-aminoethane-sulfonic acid THPA, 9,10,16-trihydroxyhexadecanoic acid (9,10,16-trihydroxypalmitic, aleuritic acid) 12-HLA, 12-hydroxydodecanoic acid (12-hydroxylauric, sabinic acid) 16-HPA, 16-hydroxyhexadecanoic acid (16-hydroxypalmitic, juniperic acid) 2-HPA, 2-hydroxyhexadecanoic acid (2-hydroxypalmitic acid) PEG-PE, 1,2-Dipalmitoyl-sn-Glycero-3-Phosphoethanolamine-N-[Nethoxy(Polyethyleneglycol) - 3000] LUV, large unilamellar vesicles SUV, small unilamellar vesicles UCP, uncoupling proteins Kow, octanol/water distribution coefficient P, permeability coefficient |
本文献已被 ScienceDirect 等数据库收录! |
|