首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A Multifunctional Separator Enables Safe and Durable Lithium/Magnesium–Sulfur Batteries under Elevated Temperature
Authors:Zhenfang Zhou  Bingbing Chen  Tingting Fang  Yue Li  Zhongfu Zhou  Qingjie Wang  Jiujun Zhang  Yufeng Zhao
Abstract:Rechargeable metal–sulfur batteries encounter severe safety hazards and fast capacity decay, caused by the flammable and shrinkable separator and unwanted polysulfide dissolution under elevated temperatures. Herein, a multifunctional Janus separator is designed by integrating temperature endurable electrospinning polyimide nonwovens with a copper nanowire‐graphene nanosheet functional layer and a rigid lithium lanthanum zirconium oxide‐polyethylene oxide matrix. Such architecture offers multifold advantages: i) intrinsically high dimensional stability and flame‐retardant capability, ii) excellent electrolyte wettability and effective metal dendritic growth inhibition, and iii) powerful physical blockage/chemical anchoring capability for the shuttled polysulfides. As a consequence, the as constructed lithium–sulfur battery using a pure sulfur cathode displays an outstandingly high discharge capacity of 1402.1 mAh g?1 and a record high cycling stability (approximately average 0.24% capacity decay per cycle within 300 cycles) at 80 °C, outperforming the state‐of‐the‐art results in the literature. Promisingly, a high sulfur mass loading of ≈3.0 mg cm?2 and a record low electrolyte/sulfur ratio of 6.0 are achieved. This functional separator also performs well for a high temperature magnesium–sulfur battery. This work demonstrates a new concept for high performance metal–sulfur battery design and promises safe and durable operation of the next generation energy storage systems.
Keywords:chemical interaction  functional separators  high safety  high temperature performance  lithium–  sulfur batteries
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号