首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Modeling a self-avoiding chromatin loop: relation to the packing problem, action-at-a-distance, and nuclear context
Authors:Bon Michaël  Marenduzzo Davide  Cook Peter R
Institution:Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom.
Abstract:There is now convincing evidence that genomes are organized into loops, and that looping brings distant genes together so that they can bind to local concentrations of polymerases in "factories" or "hubs." As there remains no systematic analysis of how looping affects the probability that a gene can access binding sites in such factories/hubs, we used an algorithm that we devised and Monte Carlo methods to model a DNA or chromatin loop as a semiflexible (self-avoiding) tube attached to a sphere; we examine how loop thickness, rigidity, and contour length affect where particular segments of the loop lie relative to binding sites on the sphere. Results are compared with those obtained with the traditional model of an (infinitely thin) freely jointed chain. They provide insights into the packing problem (how long genomes are packed into small nuclei), and action-at-a-distance (how firing of one origin or gene can prevent firing of an adjacent one).
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号