首页 | 本学科首页   官方微博 | 高级检索  
   检索      


ATR, PML, and CHK2 play a role in arsenic trioxide-induced apoptosis
Authors:Joe Yeonsoo  Jeong Jae-Hoon  Yang Shutong  Kang Hyeog  Motoyama Noburu  Pandolfi Pier Paolo  Chung Jay H  Kim Myung K
Institution:Laboratory of Biochemical Genetics, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA.
Abstract:Arsenic trioxide (ATO) is a potent anti-leukemic chemotherapeutic agent for acute promyelocytic leukemia (APL) that results from a t (15, 17) chromosomal translocation that produces PML-RARalpha, a fusion protein between a tumor suppressor PML and the retinoic acid receptor RARalpha. APL patients are initially treated with retinoic acid, but most develop resistance and relapse. In contrast, ATO induces prolonged remissions even in the relapsed cases. However, the molecular mechanisms by which ATO kills the leukemic cells are not fully understood. We find that ATO induces apoptosis, at least in part, by activating proapoptotic kinase Chk2. ATO does this by stimulating ATR (ataxia telangiectasia mutated and Rad3-related) kinase, a Chk2-activating kinase. In conjunction, ATO degrades PML-RARalpha, resulting in the restoration of PML, which is required for autophosphorylation and full activation of Chk2. As a result, the p53-dependent apoptosis pathway is activated. Based on this, we propose that a pathway composed of ATR, PML, Chk2, and p53 plays a role in ATO-mediated apoptosis, a notion that is consistent with the observation that Chk2 is genetically intact and mutations in the p53 gene are extremely rare in APL.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号