首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Longitudinal patterns of production, food consumption, and seston utilization by net-spinning caddisflies (Trichoptera) in a southern Appalachian stream (USA)
Authors:Douglas H Ross  J Bruce Wallace
Institution:Biochem Products, POB 264, Montchanin, DE 19710, USA;Dept of Entomology, Univ. of Georgia, Athens, GA 30602, USA
Abstract:Larval production of ten species of Hydropsychidae and Philipotamidae was studied at six stations along 6.4 km of a southern Appalachian stream, encompassing stream orders 1–4 and a 600 m elevation change. Species-specific production estimates ranged from 23–983 mg AFDM m?2 yr?1 These low values are attributed to the paucity of nutrients in these undisturbed headwater streams which reduces detrital food quality, algal growth, and production of smaller invertebrates eaten by hydropsychids. Animal food supported the majority of hydropsychid production (72%); philopotamids relied primarily on fine detritus (80%) and diatoms (15%). The contribution of animal food to caddisfly production decreased downstream, while the relative importance of filamentous algae and diatoms increased. These changes reflect the downstream decline of more carnivorous species, as well as increased primary production which accompanies the shift in lotic community metabolism from heterotrophy towards autotrophy with increasing stream order. Net-spinning caddisflies had a minor impact on seston quantity, consuming only 0.0003%-0.005% of the total seston (including invertebrate drift) passing over a m2 of substrate annually. In contrast, the percentage of invertebrate drift consumed was, on the average, > 400 × higher than total seston consumption. These insects influence seston quality rather than quantity. The percentage of total seston and animal drift consumed declined downstream, indicating that turnover lengths of these materials increase with stream order. Longer turnover lengths or “spirals” result from changes in the physical characteristics of the stream, i.e., increasing discharge and stream power and decreasing numbers of retention devices (i.e., organic debris dams), which increase the downstream transport velocity of seston. Higher transport velocities reduce the rates at which these filter feeding caddisflies can process the organic inputs to a given reach of stream. Small streams (orders 1–3) appear to be most responsible for efficient processing of a stream's energy inputs.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号