首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Novel role of NADPH oxidase in ischemic myocardium: a study with Nox2 knockout mice
Authors:Mahesh Thirunavukkarasu  Ram Sudheer Adluri  Bela Juhasz  Samson Mathews Samuel  Lijun Zhan  Anupinder Kaur  Gautam Maulik  Juan A Sanchez  Janet Hager  Nilanjana Maulik
Institution:Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, USA.
Abstract:Several potential sources of reactive oxygen species (ROS) in cells exist. One source is NADPH oxidase, which is especially important for superoxide radical production. Nox2 is a primary regulatory subunit of NADPH oxidase. In the present study, we examined the role of ROS and NADPH oxidase in ischemic preconditioning (IP)-mediated cardioprotection by using Nox2(-/-) mice. Both wild-type (WT) and Nox2(-/-) mice were subjected to either 30?min of ischemia followed by 2?h of reperfusion (IR) or IP prior to 30?min ischemia and 2?h of reperfusion. Reduction in left ventricular developed pressure (60.1 versus 63?mmHg), dp/dt (max) (893 versus 1,027?mmHg/s), and aortic flow (0.9 versus 1.8?ml/min) was observed in Nox2(-/-)IPIR compared to WTIPIR along with increased infarct size (33% versus 22%) and apoptosis after 120?min of reperfusion. Differentially regulated genes were demonstrated by comparing gene expression in WTIPIR versus Nox2(-/-) IPIR hearts. Selected differentially regulated genes such as β-catenin, SRPK3, ERDR1, ACIN1, Syntaxin-8, and STC1 were validated by real-time PCR. Taken together, this is the first report identifying important, differentially expressed genes during ischemic preconditioning in Nox2(-/-) mice by using microarray analysis.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号