Folding topology of the disulfide-bonded dimeric DNA-binding domain of the myogenic determination factor MyoD. |
| |
Authors: | M A Starovasnik T K Blackwell T M Laue H Weintraub R E Klevit |
| |
Affiliation: | Department of Biochemistry, University of Washington, Seattle 98195. |
| |
Abstract: | The myogenic determination factor MyoD is a member of the basic-helix-loop-helix (bHLH) protein family. A 68-residue fragment of MyoD encompassing the entire bHLH region (MyoD-bHLH) is sufficient for protein dimerization, sequence-specific DNA binding in vitro, and conversion of fibroblasts into muscle cells. The circular dichroism spectrum of MyoD-bHLH indicates the presence of significant alpha-helical secondary structure; however, the NMR spectrum lacks features of a well-defined tertiary structure. There is a naturally occurring cysteine at residue 135 in mouse MyoD that when oxidized to a disulfide induces MyoD-bHLH to form a symmetric homodimer with a defined tertiary structure as judged by sedimentation equilibrium ultracentrifugation and NMR spectroscopy. Oxidized MyoD-bHLH retains sequence-specific DNA-binding activity, albeit with an apparent 100-1000-fold decrease in affinity. Here, we report the structural characterization of the oxidized MyoD-bHLH homodimer by NMR spectroscopy. Our findings indicate that the basic region is unstructured and flexible, while the HLH region consists of two alpha-helices of unequal length connected by an as yet undetermined loop structure. Qualitative examination of interhelical NOEs suggests several potential arrangements for the two helix 1/helix 2 pairs in the symmetric oxidized dimer. These arrangements were evaluated for whether they could incorporate the disulfide bond, satisfy loop length constraints, and juxtapose the two basic regions. Only a model that aligns helix 1 parallel to helix 1' and antiparallel to helix 2 was consistent with all constraints. Thus, an antiparallel four-helix bundle topology is proposed for the symmetric dimer. This topology is hypothesized to serve as a general model for other bHLH protein domains. |
| |
Keywords: | |
|
|