首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Implications of the feeding current structure of Euchaeta rimana, a carnivorous pelagic copepod, on the spatial orientation of their prey
Authors:Fields  DM; Yen  J
Institution:Marine Sciences Research Center, State University of New York Stony Brook, NY 11794-5000, USA
Abstract:Many marine planktonic organisms create water currents to entrainand capture food items. Rheotactic prey entrained within thesefeeding currents often exibit escape reactions. If the directionof escape is away from the feeding current, the prey may successfullydeter predation. If the escape is towards the center of thefeeding current, the prey will be re-entrained towards its predatorand remain at risk of predation. The direction of escape isdependent on (i) the ability of the prey to escape in a directiondifferent than its pre-escape orientation and (ii) the orientationcaused by the interaction of the prey's body with the movingfluid. In this study, the change in orientation of Acartia hudsonicanauplii as a result of entrainment within the feeding currentof Euchaeta rimana, a planktonic predatory copepod, was examined,When escaping in still water, A.hudsonica nauplii were ableto vary their pre-escape direction by only 10. This allowsonly a limited ability to escape in a direction different thantheir pre-escape orientation. Analyses of the feeding currentof E.rimana show the flow speed to be most rapid in the centralregion with an exponential decrease in speed distally. In contrast,flow vorticity is minimal in the center of the feeding currentand maximal at 1.75 mm along the antennae. As a result, thedegree of rotation of the prey towards the center of the feedingcurrent shows a strong dependency on the prey's location withinthe feeding current. The feeding current of E.rimana rotatedthe prey 14 when near the center of the flow field and up to160 when located more distal in the feeding current Since theprey's escape abilities cannot compensate for the rotation dueto the flow, this mechanism will maintain the escaping preywithin the feeding current of their predator. Therefore, thefeeding current facilitates predatory copepods in capturingprey by (i) increasing the amount of water which passes overtheir sensors and through their feeding appendages and (ii)controlling the spatial orientation of their prey prior to escape.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号