首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Increased uracil insertion in DNA is cytotoxic and increases the frequency of mutation,double strand break formation and VSG switching in Trypanosoma brucei
Authors:Víctor M Castillo-Acosta  Fernando Aguilar-Pereyra  Jean-Mathieu Bart  Miguel Navarro  Luis M Ruiz-Pérez  Antonio E Vidal  Dolores González-Pacanowska
Institution:1. Institut für Zellbiologie, Universität Bern, Switzerland;2. Swiss Tropical and Public Health Institute, Basel, Switzerland;1. Institute of Arctic Biology, 311 Irving I Building, 902 N. Koyukuk Drive, University of Alaska Fairbanks, Fairbanks, AK 99775, United States;2. University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK 99775, United States;3. Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden;4. Department of Biochemistry, Institute of Biochemistry and Biophysics, P.O. Box 13145-1384, Tehran University, Tehran, Iran
Abstract:Deoxyuridine 5′-triphosphate pyrophosphatase (dUTPase) and uracil-DNA glycosylase (UNG) are key enzymes involved in the control of the presence of uracil in DNA. While dUTPase prevents uracil misincorporation by removing dUTP from the deoxynucleotide pool, UNG excises uracil from DNA as a first step of the base excision repair pathway (BER). Here, we report that strong down-regulation of dUTPase in UNG-deficient Trypanosoma brucei cells greatly impairs cell viability in both bloodstream and procyclic forms, underscoring the extreme sensitivity of trypanosomes to uracil in DNA. Depletion of dUTPase activity in the absence of UNG provoked cell cycle alterations, massive dUTP misincorporation into DNA and chromosomal fragmentation. Overall, trypanosomatid cells that lack dUTPase and UNG activities exhibited greater proliferation defects and DNA damage than cells deficient in only one of these activities. To determine the mutagenic consequences of uracil in DNA, mutation rates and spectra were analyzed in dUTPase-depleted cells in the presence of UNG activity. These cells displayed a spontaneous mutation rate 9-fold higher than the parental cell line. Base substitutions at A:T base pairs and deletion frequencies were both significantly enhanced which is consistent with the generation of mutagenic AP sites and DNA strand breaks. The increase in strand breaks conveyed a concomitant increase in VSG switching in vitro. The low tolerance of T. brucei to uracil in DNA emphasizes the importance of uracil removal and regulation of intracellular dUTP pool levels in cell viability and genetic stability and suggests potential strategies to compromise parasite survival.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号