Pea Chloroplast DnaJ-J8 and Toc12 Are Encoded by the Same Gene and Localized in the Stroma |
| |
Authors: | Chi-Chou Chiu Lih-Jen Chen Hsou-min Li |
| |
Affiliation: | Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan |
| |
Abstract: | Toc12 is a novel J domain-containing protein identified in pea (Pisum sativum) chloroplasts. It was shown to be an integral outer membrane protein localizing in the intermembrane space of the chloroplast envelope. Furthermore, Toc12 was shown to associate with an intermembrane space Hsp70, suggesting that Toc12 is important for protein translocation across the chloroplast envelope. Toc12 shares a high degree of sequence similarity with Arabidopsis (Arabidopsis thaliana) DnaJ-J8, which has been suggested to be a soluble protein of the chloroplast stroma. Here, we isolated genes encoding DnaJ-J8 from pea and found that Toc12 is a truncated clone of one of the pea DnaJ-J8s. Protein import analyses indicate that Toc12 and DnaJ-J8s possess a cleavable transit peptide and are localized in the stroma. Arabidopsis mutants with T-DNA insertions in the DnaJ-J8 gene show no defect in chloroplast protein import. Implications of these results in the energetics and mechanisms of chloroplast protein import are discussed.Most chloroplast proteins are encoded by the nuclear genome and synthesized in the cytosol as higher molecular mass precursors with an N-terminal extension known as the transit peptide. Precursor proteins are imported into chloroplasts through a translocon complex located at the chloroplast envelope. Translocon components associated with the outer membrane are called Toc (for translocon of the outer envelope membrane of chloroplast) proteins, and those associated with the inner membrane are called Tic (for translocon of the inner envelope membrane of chloroplast) proteins. Cleavage of the transit peptide from the precursor by a specific stromal processing peptidase during translocation results in the production of the lower molecular mass mature protein. Various translocon components have been assigned functions in the basic steps of the import process (for review, see Inaba and Schnell, 2008; Jarvis, 2008; Li and Chiu, 2010). For example, Toc159 (the no. indicates the calculated molecular mass of the protein) and Toc34 are receptors for the transit peptides, and Toc75 is the protein-translocating channel across the outer membrane. Toc64, on the other hand, has a dual function: it serves as a docking site for the cytosolic Hsp90 through its cytosolic domain and as a scaffold for translocon components located in the intermembrane space through its intermembrane space domain (Qbadou et al., 2007).Protein import into chloroplasts involves at least two distinct ATP-consuming steps. The first step is called “early import intermediate” or “docking,” in which less than 100 μm ATP is required and precursors are translocated across the outer membrane and come into contact with translocon components in the inner membrane (Olsen et al., 1989; Kouranov and Schnell, 1997; Inaba et al., 2003; Inoue and Akita, 2008). It has been shown that the ATP is used in the intermembrane space (Olsen and Keegstra, 1992), most likely by a yet unidentified intermembrane space Hsp70 called imsHsp70 or Hsp70-IAP (ims for “intermembrane space” and IAP for “import intermediate-associated protein”; Marshall et al., 1990; Schnell et al., 1994; Qbadou et al., 2007). The second ATP-consuming step is the complete translocation of precursors across the two envelope membranes into the stroma. This step requires about 1 mm ATP. The ATP is most likely used by the stromal Hsp93 and chloroplast Hsc70 associated with the translocon to drive protein translocation into the stroma (Nielsen et al., 1997; Shi and Theg, 2010; Su and Li, 2010).Hsp70 family proteins are involved in many cellular processes, including protein folding, protein translocation across membranes, and regulation of protein degradation. Hsp70 proteins are often recruited to perform a certain function by specifically localized J domain-containing proteins. The J domain-containing proteins interact with Hsp70 when Hsp70 is bound to ATP and stimulate ATP hydrolysis by Hsp70. The specific J domain-containing cochaperone that recruits the stromal chloroplast Hsc70 to the inner envelope membrane to assist in protein translocation has not been identified. The specific J domain-containing cochaperone for imsHsp70 for its function in protein import into chloroplasts is proposed to be a protein named Toc12 (Becker et al., 2004).Toc12 was identified as a novel J domain-containing protein from pea (Pisum sativum) chloroplasts. It belongs to the type III J domain proteins containing only the J domain without the Gly- and Phe-rich domain (G/F domain) and the zinc-finger domain originally found in Escherichia coli DnaJ. It has been shown that the protein is synthesized at its mature size of 103 amino acids without a cleavable transit peptide. After import, the protein has been shown to anchor in the outer membrane by its N-terminal part, which has been suggested to form a β-barrel-type domain. Its C-terminal part, composed of the J domain, has been shown to localize in the intermembrane space. Toc12 has been shown to associate with imsHsp70. Toc12 and imsHsp70 interact with the intermembrane space domain of Toc64, which in turn associates with another intermembrane space translocon component, Tic22. It is proposed that the Toc12-imsHsp70-Toc64-Tic22 complex mediates protein translocation across the intermembrane space through specific precursor binding and ATP hydrolysis (Becker et al., 2004; Qbadou et al., 2007). However, the existence of imsHsp70 has only been shown on immunoblots by its reactivity to the monoclonal antibody SPA820 raised against human Hsp70. Its encoding gene has never been identified. The Arabidopsis (Arabidopsis thaliana) Hsp70 gene family has 14 members. Only two of them are localized in chloroplasts, and both have been shown to locate in the stroma (Ratnayake et al., 2008; Su and Li, 2008). A recent study has further shown that the major protein recognized by the SPA820 antibody in pea chloroplasts is located in the stroma, indicating that imsHsp70 is most likely a stromal protein (Ratnayake et al., 2008).Most translocon components were originally identified from pea chloroplasts. While all translocon components identified from pea have easily recognizable Arabidopsis homologs, Toc12 seems to be an exception. The Arabidopsis gene suggested to be the pea TOC12 homolog, At1g80920 (Inoue, 2007; Jarvis, 2008), encodes a protein that is much larger than pea Toc12 and is annotated as J8 (referred to as AtJ8 herein). The entire pea Toc12 has a high sequence similarity to the N-terminal two-thirds of AtJ8. AtJ8 contains an extra C-terminal domain of 60 amino acids that is highly conserved among J8 proteins from other higher plants. However, in contrast to pea Toc12, AtJ8 is predicted to locate in the stroma (Miernyk, 2001; www.arabidopsis.org). Indeed, a fusion protein consisting of the first 80 amino acids of AtJ8 fused at the N terminus of GFP was imported into the chloroplast stroma, and approximately 46 amino acids from the N terminus were processed after import (Lee et al., 2008), indicating that the first 46 amino acids of AtJ8 function as a cleavable stroma-targeting transit peptide. A T-DNA insertion in the AtJ8 gene that causes the truncation of the last three amino acids results in no visible phenotype. However, detailed analyses indicate that the mutant has lower CO2 assimilation and Rubisco activity than the wild type (Chen et al., 2010).We are interested in identifying J domain-containing proteins interacting with stromal Hsp70. As part of the initial effort, we investigated the suborganellar location of J8 and examined the relationship between Toc12 and J8. We found that, in pea, there are at least two genes encoding J8, which we named PsJ8a and PsJ8b. TOC12 represents part of PsJ8b. Toc12, AtJ8, and the two PsJ8 proteins could be imported into chloroplasts and processed to stromally localized soluble mature proteins. Four alleles of AtJ8 mutants were analyzed, but none of them showed any defect in the import of various chloroplast precursor proteins. |
| |
Keywords: | |
|
|