首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of the pituitary gland in the development of photorefractoriness and generation of long-term changes in prolactin secretion in rams
Authors:Lincoln G A  Clarke I J
Institution:MRC Reproductive Biology Unit, Centre for Reproductive Biology, Edinburgh EH3 9EW, Scotland, United Kingdom. g.lincoln@ed-rbu.mrc.ac.uk
Abstract:Hypothalamo-pituitary disconnected Soay rams were exposed to two photoperiodic treatments: 1) constant long days (16L:8D) for 48 wk after pretreatment under short days (LD group), and 2) constant short days (8L:16D) for 48 wk after pretreatment under long days (SD group). In the LD group, plasma prolactin (PRL) concentrations increased from 0 to 8 wk (maximum: 143.3 +/- 8.4 microg/l; 8.8 +/- 1. 2 wk), decreased from 9 to 34 wk (minimum: 15.6 +/- 1.6 microg/l; 34. 5 +/- 1.5 wk), and finally increased again under the constant conditions, with a similar cyclical pattern for all individuals. In the SD group, PRL concentrations showed an inverse pattern (minimum: 8.6 +/- 2.6 microg/l; 17.1 +/- 2.0 wk; maximum: 46.4 +/- 5.5 microg/l; 30.2 +/- 3.2 wk), with more variability. Plasma concentrations of FSH were basal in both groups. The duration of the daily nocturnal melatonin peak (measured at 10, 24, and 44 wk) remained close to 8 h under long days (high-fidelity melatonin signal) but decreased significantly (13.8 h to 9.3 h) under short days (low-fidelity melatonin signal). The results support the conclusion that the melatonin signal encoding photoperiod acts within the pituitary gland to induce both acute (inductive) and chronic (refractory) effects photoperiod on PRL secretion.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号