首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Investigating design principles of micropatterned encapsulation systems containing high-density microtissue arrays
Authors:LiYang Jiang  JiaYing Liu  Kai Wang  Xi Gu  Ying Luo
Institution:1. Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
2. National Engineering Laboratory for Regenerative and Implantable Medical Devices, Guangzhou, 510663, China
Abstract:Immunoisolation is an important strategy to protect transplanted cells from rejection by the host immune system. Recently, microfabrication techniques have been used to create hydrogel membranes to encapsulate microtissue in an arrayed organization. The method illustrates a new macroencapsulation paradigm that may allow transplantation of a large number of cells with microscale spatial control, while maintaining an encapsulation device that is easily maneuverable and remaining integrated following transplantation. This study aims to investigate the design principles that relate to the translational application of micropatterned encapsulation membranes, namely, the control over the transplantation density/quantity of arrayed microtissues and the fidelity of pre-formed microtissues to micropatterns. Agarose hydrogel membranes with microwell patterns were used as a model encapsulation system to exemplify these principles. Our results show that high-density micropatterns can be generated in hydrogel membranes, which can potentially maximize the percentage volume of cellular content and thereby the transplantation efficiency of the encapsulation device. Direct seeding of microtissues demonstrates that microwell structures can efficiently position and organize pre-formed microtissues, suggesting the capability of micropatterned devices for manipulation of cellular transplants at multicellular or tissue levels. Detailed theoretical analysis was performed to provide insights into the relationship between micropatterns and the transplantation capacity of membrane-based encapsulation. Our study lays the ground for developing new macroencapsulation systems with microscale cellular/tissue patterns for regenerative transplantation.
Keywords:hydrogel  micropattern  array  multi-cellular spheroids  macroencapsulation
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号