首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The complete linkage disequilibrium test: a test that points to causative mutations underlying quantitative traits
Authors:Eivind Uleberg  Theo HE Meuwissen
Institution:1.Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1432 Ås, Norway;2.Norwegian Institute for Agricultural and Environmental Research, Arctic Agriculture and Land Use Division, 9269 Tromsø, Norway
Abstract:

Background

Genetically, SNP that are in complete linkage disequilibrium with the causative SNP cannot be distinguished from the causative SNP. The Complete Linkage Disequilibrium (CLD) test presented here tests whether a SNP is in complete LD with the causative mutation or not. The performance of the CLD test is evaluated in 1000 simulated datasets.

Methods

The CLD test consists of two steps i.e. analysis I and analysis II. Analysis I consists of an association analysis of the investigated region. The log-likelihood values from analysis I are next ranked in descending order and in analysis II the CLD test evaluates differences in log-likelihood ratios between the best and second best markers. Under the null-hypothesis distribution, the best SNP is in greater LD with the QTL than the second best, while under the alternative-CLD-hypothesis, the best SNP is alike-in-state with the QTL. To find a significance threshold, the test was also performed on data excluding the causative SNP. The 5th, 10th and 50th highest TCLD value from 1000 replicated analyses were used to control the type-I-error rate of the test at p = 0.005, p = 0.01 and p = 0.05, respectively.

Results

In a situation where the QTL explained 48% of the phenotypic variance analysis I detected a QTL in 994 replicates (p = 0.001), where 972 were positioned in the correct QTL position. When the causative SNP was excluded from the analysis, 714 replicates detected evidence of a QTL (p = 0.001). In analysis II, the CLD test confirmed 280 causative SNP from 1000 simulations (p = 0.05), i.e. power was 28%. When the effect of the QTL was reduced by doubling the error variance, the power of the test reduced relatively little to 23%. When sequence data were used, the power of the test reduced to 16%. All SNP that were confirmed by the CLD test were positioned in the correct QTL position.

Conclusions

The CLD test can provide evidence for a causative SNP, but its power may be low in situations with closely linked markers. In such situations, also functional evidence will be needed to definitely conclude whether the SNP is causative or not.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号