首页 | 本学科首页   官方微博 | 高级检索  
     


Overproduction of bacterial protein disulfide isomerase (DsbC) and its modulator (DsbD) markedly enhances periplasmic production of human nerve growth factor in Escherichia coli
Authors:Kurokawa Y  Yanagi H  Yura T
Affiliation:HSP Research Institute, Kyoto Research Park, Kyoto 600-8813, Japan.
Abstract:Production of eukaryotic proteins with multiple disulfide bonds in the Escherichia coli periplasm often encounters difficulty in obtaining soluble products with native structure. Human nerve growth factor beta (NGF) contains three disulfide bonds between nonconsecutive cysteine residues and forms insoluble aggregates when expressed in E. coli. We now report that overexpression of Dsb proteins known to catalyze formation and isomerization of disulfide bonds can substantially enhance periplasmic production of NGF. A set of pACYC184-based plasmids that permit dsb expression under the araB promoter were introduced into cells carrying a compatible plasmid that expresses NGF. The efficiency of periplasmic production of NGF fused to the OmpT signal peptide was strikingly improved by coexpression of DsbCD or DsbABCD proteins (up to 80% of total NGF produced). Coexpression of DsbAB was hardly effective, whereas that of DsbAC increased the total yield but not the periplasmic expression. These results suggest synergistic roles of DsbC and DsbD in disulfide isomerization that appear to become limiting upon NGF production. Furthermore, recombinant NGF produced with excess DsbCD (or DsbABCD) was biologically active judged by the neurite outgrowth assay using rat PC12 cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号