首页 | 本学科首页   官方微博 | 高级检索  
     


Asymbiotic Nitrogen Fixation and Litter Decomposition on a Long Soil-Age Gradient in Hawaiian Montane Rain Forest1
Authors:Matthew V. Thompson  Peter M. Vitousek
Abstract:We determined rates of decomposition and asymbiotic nitrogen fixation in the leaf litter of Cheirodendron spp. on the Hawaiian Islands. Leaf litter was collected from four sites on a long soil-age gradient (300 yr to 4.1 M yr) and decomposed at two sites that differed widely in substrate age and nutrient availability. Rates of decomposition were higher in litter decomposed at the older site, where nutrient availability was greater. A substantial amount of nitrogen and phosphorus immobilization occurred in litter decomposed at the older site, with more immobilization occurring in litter with lower initial nitrogen and phosphorus concentrations, suggesting both supply and demand controls on nutrient immobilization. Potential rates of nitrogen fixation were very low in the first 25 d (0–5 nmol acetylene/gdw/h), rose to much higher rates by 70 d (20–45 nmol), and then declined by 140 d. We found no significant difference in rates of potential nitrogen fixation between sites of decomposition, but there was a strong substrate effect, with higher rates in litter with low lignin, low nitrogen, and high phosphorus. Where significant immobilization of nitrogen occurred for decomposing Cheirodendron, nitrogen fixation could have comprised no more than 10 percent of immobilized nitrogen. Overall, rates of nitrogen fixation were dependent on the source of the decomposing substrate but not on the site of decomposition, while short-term decomposition and nutrient immobilization were strongly dependent on the site of decomposition but not as much on the source of the decomposing substrate.
Keywords:Cheirodendron spp  immobilization  litter nutrient content  Metrosideros polymorpha  phosphorus  site fertility  soil development  substrate quality
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号