首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Photosynthetic Performance and Pigment Composition of Leaves from two Tropical Species is Determined by Light Quality
Authors:J C Ramalho  N C Marques  J N Semedo  M C Matos  V L Quartin
Institution:Instituto Investigaç;ão Cientìfica Tropical, Centro de Estudos de Produç;ão e Tecnologia Agrìcolas, Tapada Ajuda, Ap. 3014, 1301-901 Lisbon, Portugal;Estaç;ão Agronómica Nacional, Dept. Fisiologia Vegetal, Av. República, 2784-505 Oeiras, Portugal;Universidade Agostinho Neto, Fac. Ciências Agrárias, P.O. Box 815, Luanda, Angola
Abstract:Abstract: A suitable light quantity and quality is essential for optimal photosynthetic metabolism. Using combinations of three lamp types, the impact of the quality of artificial light conditions on the photosynthetic apparatus of leaves developed in growth chambers was analysed. The VIALOX‐Planta lamps are quite poor outside the green to orange (520 ‐ 620 nm) wavelength range, while the HQI‐BT lamps present a more uniform spectral intensity between 425 and 650 nm (blue to red). The halogen lamps are particularly rich in the red and far red range of the electromagnetic spectra. The lamps also differ in the red: far red ratio, which were 3.07 (VIALOX), 2.06 (HQI‐BT) and 1.12 (halogen). Clear positive effects were detected in most of the photosynthetic parameters in relation to light quality, both at stomatal and mesophyll levels. Despite some species‐dependent sensitivity to blue and red/far red wavelengths, observed among the studied parameters, the best photosynthetic performances of the test plants (Packyrhizus ahipa and Piatã, a hybrid of Coffea dewevrei×Coffea arabica) were obtained almost always with the reinforcement of blue (HQI‐BT lamps), red and far red (halogen lamps) wavelengths and with a red: far red ratio closer to that observed in nature. This suggests the involvement of more than one photoreceptor family in photosynthetic performance. Under such light conditions, increases in net photosynthesis and stomatal conductance were observed and, despite the moderate effects on photosynthetic capacity, strong effects were observed in the capture and transfer of light energy in the antennae pigments, photochemical efficiency of photosystem II and electron transport. This was related to the striking quantitative and qualitative impacts observed on total chlorophylls and carotenoids, which reached, in some cases, increases of 100 and 200 %, respectively. Among carotenoids, increases as high as 9‐fold for α‐carotene were observed (P. ahipa), with chlorophyll (a/b), total (chlorophyll/carotenoid) and carotene (α/β) ratios also strongly affected. This would have affected the structure and stability of photosynthetic membranes which, in turn, affected photosynthetic‐related processes (e.g., antennae pigments, photosystem II and electron transport efficiencies). This was particularly clear in the HQI + halogen treatment. The results unequivocally show that light quality could remain a clear limiting factor for leaf/plant development under artificial light conditions, which could be overcome using more than one lamp type, with complementary emission spectra.
Keywords:Artificial light  chlorophyll a fluorescence              Coffea sp  gas exchange  light quality              Packyrhizus ahipa            photosynthesis  pigments
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号