Inhibition of D-serine accumulation in the Xenopus oocyte by expression of the rat ortholog of human 3'-phosphoadenosine 5'-phosphosulfate transporter gene isolated from the neocortex as D-serine modulator-1 |
| |
Authors: | Shimazu Dai Yamamoto Naoki Umino Asami Ishii Sumikazu Sakurai Shin-ichiro Nishikawa Toru |
| |
Affiliation: | Section of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan. |
| |
Abstract: | D-serine in mammalian brains has been suggested to be an endogenous co-agonist of the NMDA-type glutamate receptor. We have explored the molecules regulating D-serine uptake and release from the rat neocortex cDNA library using a Xenopus oocyte expression system, and isolated a cDNA clone designated as dsm-1 (D-serine modulator-1) encoding a protein that reduces the accumulation of D-serine to the oocyte. dsm-1 is the rat orthologue of the human 3'-phosphoadenosine 5'-phosphosulfate transporter 1 (PAPST1) gene. The hydropathy analysis of the deduced amino acid sequence of the Dsm-1 protein predicts the 10 transmembrane domains with a long hydrophobic stretch in the C-terminal like some amino acid transporters. The dsm-1 mRNA is predominantly expressed in the forebrain areas that are enriched with D-serine and NMDA receptors, and in the liver. The transient expression of dsm-1 in COS-7 cells demonstrates a partially Golgi apparatus-related punctuate distribution throughout the cytoplasm with a concentration near the nucleus. dsm-1-expressing oocytes diminishes the sodium-dependent and -independent accumulation of D-serine and the basal levels of the intrinsic D-serine and increases the rate of release of the pre-loaded D-serine. These findings indicate that dsm-1 may, at least in part, be involved in the D-serine translocation across the vesicular or plasma membranes in the brain, and thereby control the extra- and intracellular contents of D-serine. |
| |
Keywords: | brain d‐serine modulator‐1 gene d‐serine transporter NMDA receptor 3′‐phsophoadenosine 5′‐phosphosulfate Xenopus oocyte |
本文献已被 PubMed 等数据库收录! |