首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris
Authors:Henk Schat  Shanti S Sharma  Riet Vooijs
Institution:Faculty of Biology, Vrije Univ., De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands;Dept of Biosciences, H. P. Univ., Shimla 171005, India.
Abstract:Accumulation of free proline in response to Cu, Cd and Zn was studied in nontolerant and metal-tolerant Silene vulgaris (Moench) Garcke. In the nontolerant ecotype these metals induced a massive accumulation of proline, especially in the leaves. When compared at equimolar concentrations in the nutrient solution, Cu was the most effective inducer, followed by Cd and Zn, respectively. However, when compared at equal toxic strength, as estimated from the degree of root growth inhibition, proline accumulation decreased in the order Cd > Zn > Cu. The threshold exposure levels for proline accumulation coincided with the highest no-effect-concentrations for root growth. In the metal-tolerant ecotype the constitutive proline concentration in the leaves was 5 to 6 times higher than in the nontolerant ecotype. Exposure to Cu and Zn, however, was without any effect on the leaf proline concentration, even at exposure levels that caused a 50% root growth inhibition. Only Cd, when present at concentrations above the highest no-effect-concentration for root growth, induced a further increase of the leaf proline content. Reducing transpiration by placing the plants under a transparent polyethylene cover almost completely inhibited proline accumulation, even at metal accumulation rates in the leaves that caused a 10-fold increase of the proline level in leaves of uncovered plants. The results demonstrate that metal-induced proline accumulation depends on the development of a metal-induced water deficit in the leaves. Differential metal-induced proline accumulation in distinctly metal-tolerant ecotypes is a consequence, rather than a cause of differential metal tolerance.
Keywords:Cadmium  copper  proline              Silene vulgaris            tolerance  zinc
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号