首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Variation in mitochondrial translation products in fertile and cytoplasmic male-sterile sugar beets
Authors:Christer Halldén  Christina Lind  Ian M Møller
Institution:(1) Department of Genetics, Lund University, Sölvegatan 29, S-223 62 Lund, Sweden;(2) Department of Plant Biochemistry, Lund University, Box 7007, S-22007 Lund, Sweden;(3) Department of Plant Physiology, Lund University, Box 7007, S-22007 Lund, Sweden
Abstract:Summary Intact and functional mitochondria were isolated from sugar beet plants (Beta vulgaris L.) containing normal fertile (F) or cytoplasmic male-sterile (S1–S4) cytoplasms. Incorporation of 35S-methionine by mitochondria isolated from both roots and leaves showed approximately 20 major and ten minor translation products. Comparison of the polypeptide synthesis patterns produced by leaf mitochondria from fertile plants of three different species within the genus Beta revealed several taxonomically related differences. Contrary to this, the patterns of polypeptides synthesized by mitochondria from roots and leaves of sugar beet plants containing the F and S1–S4 cytoplasms were very similar; in the S1 and S2 cytoplasms no qualitative, and only a few quantitative, differences from the F cytoplasm were observed. Thus, in these cases, cytoplasmic male sterility in sugar beet is not correlated with the constitutive expression of variant polypeptides. In the S3 cytoplasm, however, an additional 6 kDa polypeptide was synthesized and in the S4 cytoplasm an additional 10 kDa polypeptide was observed when compared with the F cytoplasm. The expression of cytoplasmic male sterility in sugar beet may be associated with these variant polypeptides. The mitochondrial polypeptides synthesized were identical in plants with different nuclear backgrounds but with identical S1 cytoplasms. Mitochondria from plants with variants of the S4 cytoplasm in the same nuclear genotype also showed identical patterns of polypeptide synthesis, including the synthesis of the 10 kDa S4-specific polypeptide. Pulse-chase experiments did not affect the synthesis of this polypeptide.
Keywords:Beta vulgaris  Cytoplasmic male sterility  35S-methionine incorporation  Mitochondria  Sugar beet
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号