首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Diffusive Conductivity of the Stomata of Wheat Leaves
Authors:MILTHORPE  F L; PENMAN  H L
Abstract:A leaf chamber (described in detail) was used alternately witha resistance porometer to measure resistance to viscous flowof air through the leaf, and with a diffusion porometer to measurethe differential diffusive flow of hydrogen and air (VHVA)through the leaf and the component of hydrogen flow (V'H) movingstraight across the leaf. The resistance of the mesophyll isneeded for interpretation: estimates by three different methodsfor viscous flow did not agree very well, but two differentmethods for diffusive flow gave good agreement. For wheat leaves,only very large errors are important. Formal analysis is in three appendixes: I. Interpretation ofviscous and diffusive flow in small pores involves some problemsin molecular physics, complicated by the particular geometryof the wheat stoma. With some uncertainty, formal expressionsare derived for the viscous resistance of a single stoma, rv,and for the resistances to diffusion of hydrogen and air, andof water vapour and carbon dioxide, all expressed as rs persquare centimetre of leaf surface. The analysis for hydrogen/airis the most uncertain; that for water vapour and carbon dioxideis more reliable. II. An indication is given of the flow characteristicsof the leaf-chamber system, from which rv can be derived, andof the basis for estimating mesophyll resistance. III. The methodof converting estimates of rs into estimates of VHVAand V'H is given. The results presented are expressed as nearly as possible interms of the quantities which were measured. For five leavesthe dependence of VHVA on V'H agrees well with theoreticalpredictions; the dependence of VHVA (and V'H) on rv,on average, agrees well with prediction, but involves the assumptionthat the stomata get shorter as they close. The agreement isgood enough to suggest that the formal expressions for rs interms of stomatal dimensions and molecular gas constants arereliable enough to be carried forward into future transpirationand assimilation studies. The minimum value of ra for watervapour (c. 3 sec cm+1) is close to values found elsewhere bydifferent techniques. At very small stomatal openings there was a large deviationfrom predicted behaviour, such as would occur if the imposedexcess air pressure further closed the stomata during viscousflow experiments.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号