首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ectopic maltase alleviates dwarf phenotype and improves plant frost tolerance of maltose transporter mutants
Authors:Jelena Cvetkovic  Ilka Haferkamp  Regina Rode  Isabel Keller  Benjamin Pommerrenig  Oliver Trentmann  Jacqueline Altensell  Michaela Fischer-Stettler  Simona Eicke  Samuel C Zeeman  H Ekkehard Neuhaus
Institution:1. Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany;2. Institute of Molecular Plant Biology, ETH Zürich, Universitätsstr. 2, 8092 Zurich, Switzerland
Abstract:Maltose, the major product of starch breakdown in Arabidopsis (Arabidopsis thaliana) leaves, exits the chloroplast via the maltose exporter1 MEX1. Consequently, mex1 loss-of-function plants exhibit substantial maltose accumulation, a starch-excess phenotype and a specific chlorotic phenotype during leaf development. Here, we investigated whether the introduction of an alternative metabolic route could suppress the marked developmental defects typical for mex1 loss-of-function mutants. To this end, we ectopically expressed in mex1  chloroplasts a functional maltase (MAL) from baker’s yeast (Saccharomyces cerevisiae, chloroplastidial MAL cpMAL] mutants). Remarkably, the stromal MAL activity substantially alleviates most phenotypic peculiarities typical for mex1 plants. However, the cpMAL lines contained only slightly less maltose than parental mex1 plants and their starch levels were, surprisingly, even higher. These findings point to a threshold level of maltose responsible for the marked developmental defects in mex1. While growth and flowering time were only slightly retarded, cpMAL lines exhibited a substantially improved frost tolerance, when compared to wild-types. In summary, these results demonstrate the possibility to bypass the MEX1 transporter, allow us to differentiate between possible starch-excess and maltose-excess responses, and demonstrate that stromal maltose accumulation prevents frost defects. The latter insight may be instrumental for the development of crop plants with improved frost tolerance.

Expressing a yeast maltase in chloroplasts of the Arabidopsis maltose transporter mutant mex1 prevents the marked developmental defects typical for that mutant and enhances plant frost tolerance.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号