首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chemiosmotic coupling of ion transport in the yeast vacuole: Its role in acidification inside organelles
Authors:Yoh Wada  Yasuhiro Anraku
Institution:(1) Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, 153 Tokyo, Japan;(2) Department of Plant Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, 113 Tokyo, Japan
Abstract:Acidification inside the vacuo-lysosome systems is ubiquitous in eukaryotic organisms and essential for organelle functions. The acidification of these organelles is accomplished by proton-translocating ATPase belonging to the V-type H+-ATPase superfamily. However, in terms of chemiosmotic energy transduction, electrogenic proton pumping alone is not sufficient to establish and maintain those compartments inside acidic. Current studies have shown that thein situ acidification depends upon the activity of V-ATPase and vacuolar anion conductance; the latter is required for shunting a membrane potential (interior positive) generated by the positively charged proton translocation. Yeast vacuoles possess two distinct Cl transport systems both participating in the acidification inside the vacuole, a large acidic compartment with digestive and storage functions. These two transport systems have distinct characteristics for their kinetics of Cl uptake or sensitivity to a stilbene derivative. One shows linear dependence on a Cl concentration and is inhibited by 4,4prime-diisothiocyano-2,2prime-stilbenedisulfonic acid (DIDS). The other shows saturable kinetics with an apparentK m for Cl of approximately 20 mM. Molecular mechanisms of the chemiosmotic coupling in the vacuolar ion transport and acidification inside are discussed in detail.
Keywords:Vacuolar acidification  anion transport  chloride transport  protonmotive force  V-ATPase  membrane potential  DeltapH" target="_blank">gif" alt="Delta" align="BASELINE" BORDER="0">pH
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号