首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Suppression of the chemically transformed phenotype of BHK cells by a human cDNA.
Authors:M V Eiden  L MacArthur  and H Okayama
Institution:Laboratory of Cell Biology, National Institute of Mental Health, Bethesda, Maryland 20892.
Abstract:Transformation of the baby hamster kidney cell line BHK SN-10 by chemical carcinogens such as nitrosylmethylurea (NMU) is mediated by the loss of a gene product critical for the suppression of malignant transformation. Somatic cell hybrids between chemically transformed BHK SN-10 cells and either normal hamster kidney or human fibroblast cells are nontransformed; therefore, a recessive mechanism underlies the malignant transformation of BHK SN-10 cells after chemical carcinogenesis (A. Stoler and N. P. Bouck, Proc. Natl. Acad. Sci. USA 82:570-574, 1985). A human fibroblast cDNA library was constructed and introduced into NMU-transformed BHK SN-10 cells (NMU 34m) in order to identify a human cDNA capable of suppressing cellular transformation. NMU-transformed BHK cells were analyzed for reversion to an anchorage-dependent normal cellular phenotype after transfection with human cDNA. The human cDNA capable of inducing stable reversion of NMU 34m cells encodes the intermediate filament protein vimentin, which is apparently required for maintenance of the normal phenotype in BHK SN-10 cells.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号