首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Occurrence of tyrosine sulfate in proteins--a balance sheet. 1. Secretory and lysosomal proteins
Authors:A Hille  T Braulke  K von Figura  W B Huttner
Institution:Cell Biology Programme, European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany.
Abstract:1. The abundance of tyrosine sulfate in secretory proteins and in various classes of cellular proteins has been quantified and compared to protein-bound carbohydrate sulfate. 2. HepG2 cells and fibroblasts, two cell types showing only the constitutive pathway of secretion, and PC12 cells, which show both the constitutive and the regulated pathway of secretion, were subjected to pulse-chase and/or long-term labelling with 35S]sulfate and 3H]tyrosine, followed by analysis of proteins in the cells and medium. Under both conditions of labelling, 65-92% of the protein-bound tyrosine sulfate and 44-84% of the protein-bound carbohydrate sulfate were found to be secretory. In HepG2 cells, the frequency of sulfation of tyrosine residues, which can be determined independently from protein abundance and the rate of protein synthesis, was 8-22 times higher in proteins secreted into the medium than in cellular proteins. 3. All cell lines studied contained significant amounts, not only of carbohydrate sulfate, but also of tyrosine sulfate in specific cellular proteins. As shown for fibroblasts, these tyrosine-sulfated proteins were retained within the cells for at least 100 min of chase following a pulse with 35S]sulfate and were almost completely recovered in a light membrane fraction after subcellular fractionation. 4. Lysosomes were found to contain small, but significant, amounts of protein-bound tyrosine sulfate in addition to protein-bound carbohydrate sulfate. Protein-bound tyrosine sulfate in lysosomes reached a peak at 20 min of chase and rapidly disappeared thereafter, whereas protein-bound carbohydrate sulfate accumulated after 20 min of chase. Examination of the known sequences of eleven lysosomal enzymes revealed the presence of potential tyrosine sulfation sites in five of them. 5. Our results show that secretory proteins are the most abundant, but not exclusive, in vivo substrates for tyrosine sulfation and suggest the presence of soluble tyrosine-sulfated proteins in lysosomes and other, as yet unidentified, organelles of the secretory pathway. In the following paper in this journal we describe the abundance of tyrosine sulfate in integral membrane proteins.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号