首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ammonium-induced proline and sucrose accumulation, and their significance in antioxidative activity and osmotic adjustment
Authors:Bok-Rye Lee  Sowbiya Muneer  Sang-Hyun Park  Qian Zhang  Tae-Hwan Kim
Institution:1. Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University, Buk-Gwangju, P.O Box 205, Gwangju, 500-600, Korea
Abstract:Excess of ammonia generates oxidative and osmotic stress, and results in an accumulation of compatible solutes. The aim of this study was to investigate the physiological significance of excess ammonium-induced proline and sucrose accumulation on antioxidative activity and osmotic adjustment. The detached leaves of white clover (Trifolium repense L.) were fed with 0, 10, 50, 100, and 200 mM NH4Cl, and the contribution of proline and sucrose to osmotic adjustment and their relationship with antioxidative enzymes activity were assessed. A gradual decline of relative water content and osmotic potential (Ψπ) with increasing NH4Cl feeding level was accompanied by an increase in ammonia concentration. Significant accumulation of proline and sucrose was observed when NH4Cl was fed over 100 mM compared with control (0 mM NH4Cl). The increase in enzyme activity was significant only at 200 mM for ascorbate peroxidase (APOD) and over 100 mM NH4Cl for guaiacol peroxidase (GPOD) and catalase (CAT). The contribution of proline and sucrose to osmotic adjustment over 100 mM, where proline and sucrose accumulation was more important, maintained at control levels or significantly decreased. The content of proline and sucrose as affected by NH4Cl feeding level was positively related with the activity of APOD, GPOD, and CAT. These results suggest that proline and sucrose accumulation induced by the excess of ammonium has a more influential role in antioxidative activity rather than osmotic adjustment.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号