首页 | 本学科首页   官方微博 | 高级检索  
     


Thylakoid Membrane-Bound, NADPH-Specific Pyridine Nucleotide Dehydrogenase Complex Mediates Cyclic Electron Transport in the Cyanobacterium Synechocystis sp. PCC 6803
Authors:Mi, Hualing   Endo, Tsuyoshi   Ogawa, Teruo   Asada, Kozi
Affiliation:1The Research Institute for Food Science, Kyoto University Uji, Kyoto, 611 Japan
2Bioscience Center, Nagoya University Chikusa-ku, Nagoya, 464-01 Japan
Abstract:The donation of electrons from NADPH to the intersystem chain,as monitored by an increase in Chl fluorescence, occurred inthe isolated thylakoid membranes of Synechocystis PCC 6803.The stimulation by NADPH of the methyl viologen-dependent photoreductionof dioxygen and of the reduction of P700+ after photooxidationin the presence of DCMU also confirmed the donation of electronsfrom NADPH to the electron carriers in the intersystem. Thesereactions were sensitive to rotenone, capsaicin, l-(2-thenoyl)-3,3,3-trifluoroacetoneand HgCl2 but not to antimycin A or flavone. In contrast tothe thylakoid membranes from the wild type, those from a mutant,designated M55, in which a gene of a subunit of the pyridinenucleotide dehydrogenase complex (NDH) had been inactivated,did not show evidence of such reactions. These results supportour previous hypothesis that the transport of electrons fromNADPH to the intersystem chain is mediated by NDH [Mi et al.(1994) Plant Cell Physiol. 35: 163] and indicate the bindingof an NADPH-specific NDH to the thylakoid membranes. The Chlfluorescence was quenched transiently by addition of ferredoxinand NADP+ to the thylakoid membranes but showed a subsequentincrease. This result suggests the reduction of plastoquinoneby the photoreduced NADP+ and initiation of the NADPH-mediatedcyclic flow of electrons around PSI. Furthermore, a similarresponse of Chl fluorescence was observed upon the additionof ferredoxin only, demonstrating the ferredoxin-dependent cyclicflow of electrons. Both pathways of cyclic electron transportwere inhibited by rotenone, and were not detected in the NDH-defectedthylakoid membranes from M55, indicating the participation ofthe NDH complex. These results confirm that, in Synechocystis,the thylakoid-bound NDH complex mediates the ferredoxin-dependentcyclic electron flow, as well as the NADPH-dependent cyclicelectron flow. (Received November 24, 1994; Accepted March 16, 1995)
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号