首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Preparation of thiolated polymeric nanocomposite for sensitive electroanalysis of dopamine
Authors:Su Zhaohong  Liu Ying  Xie Qingji  Chen Li  Zhang Yi  Meng Yue  Li Yan  Fu Yingchun  Ma Ming  Yao Shouzhuo
Institution:Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
Abstract:We report on the thiol-ene chemistry guided preparation of novel thiolated polymeric nanocomposite films of abundant anionic carboxylic groups for electrostatic enrichment and sensitive electroanalysis of cationic dopamine (DA) in neutral solution. Briefly, the thiol-ene nucleophilic reaction of a carboxylated thiol with oxidized polypyrrole (PPy), which was electrosynthesized on an Au electrode in the presence of solution-dispersed acidified multiwalled carbon nanotubes (MWCNTs), produced an a PPy-thiol-MWCNTs/Au electrode, and the PPy can be electrochemically overoxidized (OPPy) to form an OPPy-thiol-MWCNTs/Au electrode. The carboxylic groups of the polymeric nanocomposite film originate from the acidified MWCNTs, PPy-tethered carboxylated thiol, and OPPy. The carboxylated thiols examined are mercaptosuccinic acid (MSA) and thioglycolic acid, with β-mercaptoethanol as a control. Electrochemical quartz crystal microbalance, scanning electron microscopy, Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopy were used for film characterization and process monitoring. Under the optimized condition, the differential pulse voltammetry peak current of DA oxidation at OPPy-MSA-MWCNTs/Au electrode is linear with DA concentration from 1.00×10(-9) to 2.87×10(-6) mol L(-1), with a limit of detection of 0.4 nmol L(-1), good anti-interferent ability and stability.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号