首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Microbial immobilization drives nitrogen cycling differences among plant species
Authors:Ramesh Laungani  Johannes M H Knops
Institution:Biology Dept, Doane College, 135 Lied Science Building, Crete, NE 68333, USA
Abstract:In many terrestrial ecosystems nitrogen (N) limits productivity and plant community composition is influenced by N availability. However, vegetation is not only controlled by N; plant species may influence ecosystem N dynamics through positive or negative effects on N cycling. We examined four potential mechanisms of plant species effects on nitrogen (N) cycling. We found no species differences in gross ammonification suggesting there are no changes in the ecosystem N cycling rate between the soil organic matter pool (SOM) and the plant/microbial pool. We also found weak differences among plant species in gross nitrification, thus plant species only marginally change the relative sizes of the NH4+ and NO3? pools. Next, more than 90% of mineralized N was microbially immobilized, and microbial N immobilization was positively correlated with root biomass. Finally, while species differed in extractable soil NO3? concentration, these differences were not related to root biomass suggesting that microbial immobilization drives net N mineralization and soil NO3? levels. Our results indicate that plant species do not cause feedbacks on the N cycling rate among the three major ecosystem N pools over nine years. However, plant carbon (C) inputs to the soil control microbial N immobilization and thereby change N partitioning between the plant and microbial N pools. Furthermore our results suggest that the SOM pool can act as a strong bottleneck for N cycling in these systems.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号