首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Condition-dependent dispersal of a patchily distributed riparian ground beetle in response to disturbance
Authors:Adam J Bates  Jon P Sadler  Adrian P Fowles
Institution:(1) School of Geography, Earth and Environmental Sciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK;(2) Countryside Council for Wales, Plas Penrhos, Bangor, Gwynedd, UK
Abstract:In common with many habitat elements of riverine landscapes, exposed riverine sediments (ERS) are highly disturbed, naturally patchy and regularly distributed, whose specialists are strongly adapted to flood disturbance and loss of habitat due to succession. Investigations of dispersal in ERS habitats therefore provide an important contrast to the unnaturally fragmented, stable systems usually studied. The present investigation analysed the three interdependent stages of dispersal: (1) emigration, (2) inter-patch movement and (3) immigration of a common ERS specialised beetle, Bembidion atrocaeruleum (Stephens 1828) (Coleoptera, Carabidae), in a relatively unmodified section of river, using mark–resight methods. Dispersal was correlated with estimates of local population size and density, water level and patch quality in order to test for condition-dependent dispersal cues. Flood inundation of habitat was found to increase strongly the overall rate of dispersal, and the rate of emigration was significantly higher from patches that were heavily trampled by cattle. Strongly declining numbers of dispersers with distance suggested low dispersal rates during periods of low water level. Dispersal in response to habitat degradation by cattle trampling would likely lead to a higher overall population fitness than a random dispersal strategy. Dispersal distances were probably adapted to the underlying habitat landscape distribution, high-flow dispersal cues and ready means of long-distance dispersal through hydrochory. Species whose dispersal is adapted to the natural habitat distribution of riverine landscapes are likely to be strongly negatively affected by reduced flood frequency and intensity and habitat fragmentation through flow regulation or channelisation.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .
Keywords:Bembidion                atrocaeruleum                Exposed riverine sediments (ERS)  Fragmentation sensitivity  Hydrochory  Riverine landscapes
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号