首页 | 本学科首页   官方微博 | 高级检索  
     


Development of a reaction system for the selective conversion of (−)-trans-carveol to (−)-carvone with whole cells of Rhodococcus erythropolis DCL14
Authors:Carla Sofia R. Tecel  o, Frederik van Keulen,M. Manuela R. da Fonseca
Affiliation:

Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal

Abstract:The present article addresses the development of a microbial reaction system for the transformation of carveol to carvone, using whole cells of Rhodococcus erythropolis DCL14. This strain contains a NAD-dependent carveol dehydrogenase (CDH) when grown on limonene or on cyclohexanol. When a mixture of (−)-cis and (−)-trans-carveol is supplied, only (−)-trans-carveol is converted. Thus, besides (−)-carvone, pure (−)-cis-carveol can be obtained as product.

Initial experiments were performed batchwise using an aqueous system. (−)-Trans-carveol conversion rate gradually decreased during successive reutilisation batches. After the third reutilisation, activity was completely lost. Cells grown on cyclohexanol showed a slightly higher activity as compared to cells grown on (+)-limonene. A production of 4.3 μmol (−)-carvone formed per mg protein was achieved. A significant improvement with respect to initial reaction rate and productivity was obtained with aqueous–organic two-phase systems. Using a 5 to 1 buffer/iso-octane system, a 40% increase in the initial rate and a 16-fold increase of the production was observed. A further improvement resulted from increasing the volume of solvent (1 to 1 buffer/dodecane ratio). An initial reaction rate of 26 nmol/(min*mg protein) was observed, while production increased to 208 μmol (−)-carvone formed per mg protein. As in the single-phase system, reaction rate gradually decreased along the successive cell reutilisation batches. Addition of co-substrates for the regeneration of NAD did not prevent this decay. A simple downstream process was developed for the recovery of carvone and cis-carveol.

Keywords:Terpenes   Carvone   Biotransformation   Rhodococcus erythropolis DCL14   Cofactor regeneration   Biphasic system
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号