首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mapping DNA-binding sites of HIV-1 integrase by protein footprinting.
Authors:A M Dirac  J Kjems
Institution:Department of Molecular and Structural Biology, Aarhus University, Denmark.
Abstract:The HIV-1 integrase protein catalyzes integration of the viral genome into host cell DNA. Whereas the structures of the three domains of integrase have been solved separately, both the structural organization of the full-length protein and its interaction with DNA remain unresolved. A protein footprinting approach was employed to investigate the accessibility of residues in the full-length soluble integrase mutant, INF(185K,C280S), to proteolytic attack in the absence and presence of DNA. The N-terminal and C-terminal domains were relatively more accessible to proteolytic attack than the core domain. The susceptibility to proteolytic attack was specifically affected by DNA at residues Lys34, in the N-terminal domain, Lys111, Lys136, Glu138, Lys156-Lys160, Lys185-Lys188, in the core domain, and Asp207, Lys 215, Glu246, Lys258 and Lys273 in the linker and C-terminal domain, suggesting that these regions are involved in, or shielded by, DNA binding. Lys34 is positioned in a putative dimerization domain, consistent with the notion that DNA stabilizes the dimeric state of integrase.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号