首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Some Effects of Root Anatomy on K, Na and Cl Loading of Citrus Roots and Leaves
Authors:STOREY  R; WALKER  R R
Abstract:Loading of K, Na and Cl into fibrous roots of salt-treated citrusgenotypes, Rangpur lime (Citrus reticulata var. austera hybrid?)and Etrog citron (C. medica L.) was investigated in relationto root anatomy, in particular, the differentiation of the epidermal-hypodermallayers with distance from the root tip. The influence of durationof salinity treatment on the characteristics of K, Na and Claccumulation in leaves of the two genotypes was explored intwo experiments respectively, covering the short term (14 d)and long term (12 weeks). This study focused on two regions of the fibrous root, a segment2–12 mm from the root tip, immediately basipetal to thezone of elongation and a differentiated region of the maturesuberized, fibrous root, 40–50 mm from the root tip. Inthe distal root segment (2–12 mm) the epidermis and hypodermisof both genotypes was observed as two closely packed, uniseriatelayers of living cells. In the proximal root segment (40–50mm) the differentiated hypodermis was evident as a uniseriatelayer of thick-walled lumina interspersed with ‘passagecells’ which were frequently associated with clustersof viable epidermal cells. The characteristics of Na and Cl loading in the two root zonesdiffered profoundly during the short term loading (acclimation)phase. Attainment of quasi-steady-states for Na and Cl in thedistal region (with the exception of Na in Etrog citron) wasrapid as was Na equilibration of the proximal root segmentsin both genotypes. In contrast, Cl loading in the proximal regiontook c. 14 d to reach a quasi-steady-state by which time Cllevels were 2 to 3 times higher in the proximal than in thedistal root segments. The superior tolerance of Rangpur lime to long term salinitywas highly correlated to Cl exclusion from the leaves. However,during the first 14 d of acclimation to 50 mol m–3 NaClthere was no segregation of the two genotypes based upon leafCl levels. Expression of differential accumulation of Cl inleaves appeared to be a time dependent process and was manifestonly after Cl saturation of the proximal root which representsthe bulk of the fibrous root system. The salt tolerance of Rangpurwas also associated with high selectivity of fibrous roots forK. over Na. A pronounced loss of K from cortical cells in theproximal root segment of salt-stressed Etrog citron was alsoevident by X-ray microanalysis. Key words: Citrus, anatomy, salinity, roots, X-ray microanalysis
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号