首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Discharge patterns of chicken cochlear ganglion neurons following kanamycin-induced hair cell loss and regeneration
Authors:R J Salvi  S S Saunders  E Hashino  L Chen
Institution:(1) Hearing Research Laboratory, Department of Communicative Disorders & Sciences, 215 Parker Hall, State University of New York at Buffalo, 14214 Buffalo, NY, USA
Abstract:Hair cells in the basal, high frequency region (>1100 Hz) of the chicken cochlea were destroyed with kanamycin (400 mg/kg/d × 10 d) and allowed to regenerate. Afterwards, single unit recordings were made from cochlear ganglion neurons at various times post-treatment. During the first few weeks post-treatment, only neurons with low characteristic frequencies (<1100 Hz) responded to sound. Despite the fact that the low frequency region of the cochlea was not destroyed, neurons with low characteristic frequencies had elevated thresholds, abnormally broad U-shaped or W-shaped tuning curves and low spontaneous discharge rates. At 2 days post-treatment, the spontaneous discharge rates of some acoustically unresponsive units fluctuated in a rhythmical manner. As recovery time increased, thresholds decreased, tuning curves narrowed and developed a symmetrical V-shape, spontaneous rate increased and neurons with higher characteristic frequencies began to respond to sound. In addition, the proportion of interspike interval histograms with regularly spaced peaks increased. These improvements progressed along a low-to-high characteristic frequency gradient. By 10–20 weeks post-treatment, the thresholds and tuning curves of neurons with characteristic frequencies below 2000 Hz were within normal limits; however, the spontaneous discharge rates of the neurons were still significantly lower than those from normal animals.Abbreviations KM kanamycin - BrdU bromodeoxyuridine - CF characteristic frequency - CAP compound action potential - ISI interspike interval
Keywords:Cochlear ganglion neurons  Hair cell regeneration  Tuning curves  Spontaneous activity  Threshold
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号