Binding of FAD to cytochrome b558 is facilitated during activation of the phagocyte NADPH oxidase, leading to superoxide production |
| |
Authors: | Hashida Shukichi Yuzawa Satoru Suzuki Nobuo N Fujioka Yuko Takikawa Takayuki Sumimoto Hideki Inagaki Fuyuhiko Fujii Hirotada |
| |
Affiliation: | Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812. |
| |
Abstract: | The superoxide-producing phagocyte NADPH oxidase can be reconstituted in a cell-free system. The activity of NADPH oxidase is dependent on FAD, but the physiological status of FAD in the oxidase is not fully elucidated. To clarify the role of FAD in NADPH oxidase, FAD-free full-length recombinant p47(phox), p67(phox), p40(phox), and Rac were prepared, and the activity was reconstituted with these proteins and purified cytochrome b(558) (cyt b(558)) with different amounts of FAD. A remarkably high activity, over 100 micromol/s/micromol heme, was obtained in the oxidase with purified cyt b(558), ternary complex (p47-p67-p40(phox)), and Rac. From titration with FAD of the activity of NADPH oxidase reconstituted with purified FAD-devoid cyt b, the dissociation constant K(d) of FAD in cyt b(558) of reconstituted oxidase was estimated as nearly 1 nm. We also examined addition of FAD on the assembly process in reconstituted oxidase. The activity was remarkably enhanced when FAD was present during assembly process, and the efficacy of incorporating FAD into the vacant FAD site in purified cyt b(558) increased, compared when FAD was added after assembly processes. The absorption spectra of reconstituted oxidase under anaerobiosis showed that incorporation of FAD into cyt b(558) recovered electron flow from NADPH to heme. From both K(d) values of FAD and the amount of incorporated FAD in cyt b(558) of reconstituted oxidase, in combination with spectra, we propose the model in which the K(d) values of FAD in cyt b(558) is changeable after activation and FAD binding works as a switch to regulate electron transfer in NADPH oxidase. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|