首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evidence against the regulation of caldesmon inhibitory activity by p42/p44erk mitogen-activated protein kinase in vitro and demonstration of another caldesmon kinase in intact gizzard smooth muscle.
Authors:M A Krymsky  M V Chibalina  V P Shirinsky  S B Marston  A V Vorotnikov
Institution:Laboratory of Cell Motility, Institute of Experimental Cardiology, Cardiology Research Center, Moscow, Russia.
Abstract:The effect of direct phosphorylation by recombinant p44erk1 mitogen-activated protein kinase on the inhibitory activity of caldesmon and its C-terminal fragment H1 was studied in vitro. Neither inhibition of actin-tropomyosin activated ATPase of heavy meromyosin by caldesmon or H1, nor inhibition of the actin-tropomyosin motility over heavy meromyosin by H1 was significantly affected by the phosphorylation while only a moderate effect on the actin-activated component of heavy meromyosin ATPase inhibition was observed. Phosphopeptide mapping of caldesmon immunoprecipitated from 32P]PO4-labelled intact gizzard strips revealed that it is predominantly phosphorylated at mitogen-activated protein kinase sites in unstimulated tissue and that it is stimulated for 1 h with phorbol 12,13-dibutyrate. We find that phorbol 12,13-dibutyrate also induces a transitory phosphorylation of caldesmon peaking at 15 min after addition and this phosphorylation is not attributed to mitogen-activated protein kinase, protein kinase C, Ca2+/calmodulin-dependent kinase II or casein kinase II. We suggest that a yet unidentified kinase, rather than mitogen-activated protein kinase, may be involved in regulation of the caldesmon function in vivo.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号