首页 | 本学科首页   官方微博 | 高级检索  
     


A local algorithm for DNA sequence alignment with inversions
Authors:Michael Schöniger  Michael S. Waterman
Affiliation:(1) Department of Mathematics, University of Southern California, 90089-1113 Los Angeles, CA, USA;(2) Molecular Biology, University of Southern California, 90089-1113 Los Angeles, CA, USA
Abstract:A dynamic programming algorithm to find all optimal alignments of DNA subsequences is described. The alignments use not only substitutions, insertions and deletions of nucleotides but also inversions (reversed complements) of substrings of the sequences. The inversion alignments themselves contain substitutions, insertions and deletions of nucleotides. We study the problem of alignment with non-intersecting inversions. To provide a computationally efficient algorithm we restrict candidate inversions to theK highest scoring inversions. An algorithm to find theJ best non-intersecting alignments with inversions is also described. The new algorithm is applied to the regions of mitochondrial DNA ofDrosophila yakuba and mouse coding for URF6 and cytochrome b and the inversion of the URF6 gene is found. The open problem of intersecting inversions is discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号