首页 | 本学科首页   官方微博 | 高级检索  
     


Biomedical word sense disambiguation with ontologies and metadata: automation meets accuracy
Authors:Dimitra Alexopoulou   Bill Andreopoulos   Heiko Dietze   Andreas Doms   Fabien Gandon   J?rg Hakenberg   Khaled Khelif   Michael Schroeder  Thomas W?chter
Affiliation:(1) Biotechnology Center (BIOTEC), Technische Universit?t Dresden, 01062 Dresden, Germany;(2) INRIA Sophia Antipolis, 2004 Route des Lucioles, 06902 Sophia Antipolis, France
Abstract:

Background  

Ontology term labels can be ambiguous and have multiple senses. While this is no problem for human annotators, it is a challenge to automated methods, which identify ontology terms in text. Classical approaches to word sense disambiguation use co-occurring words or terms. However, most treat ontologies as simple terminologies, without making use of the ontology structure or the semantic similarity between terms. Another useful source of information for disambiguation are metadata. Here, we systematically compare three approaches to word sense disambiguation, which use ontologies and metadata, respectively.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号