Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+-H+ antiporter during salinity stress |
| |
Authors: | Qi Zhi Spalding Edgar P |
| |
Affiliation: | Department of Botany, University of Wisconsin, Madison, WI 53706, USA. |
| |
Abstract: | Physicochemical similarities between K(+) and Na(+) result in interactions between their homeostatic mechanisms. The physiological interactions between these two ions was investigated by examining aspects of K(+) nutrition in the Arabidopsis salt overly sensitive (sos) mutants, and salt sensitivity in the K(+) transport mutants akt1 (Arabidopsis K(+) transporter) and skor (shaker-like K(+) outward-rectifying channel). The K(+)-uptake ability (membrane permeability) of the sos mutant root cells measured electrophysiologically was normal in control conditions. Also, growth rates of these mutants in Na(+)-free media displayed wild-type K(+) dependence. However, mild salt stress (50 mm NaCl) strongly inhibited root-cell K(+) permeability and growth rate in K(+)-limiting conditions of sos1 but not wild-type plants. Increasing K(+) availability partially rescued the sos1 growth phenotype. Therefore, it appears that in the presence of Na(+), the SOS1 Na(+)-H(+) antiporter is necessary for protecting the K(+) permeability on which growth depends. The hypothesis that the elevated cytoplasmic Na(+) levels predicted to result from loss of SOS1 function impaired the K(+) permeability was tested by introducing 10 mm NaCl into the cytoplasm of a patch-clamped wild-type root cell. Complete loss of AKT1 K(+) channel activity ensued. AKT1 is apparently a target of salt stress in sos1 plants, resulting in poor growth due to impaired K(+) uptake. Complementary studies showed that akt1 seedlings were salt sensitive during early seedling development, but skor seedlings were normal. Thus, the effect of Na(+) on K(+) transport is probably more important at the uptake stage than at the xylem loading stage. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|